Human coronavirus NL63 nsp1 induces degradation of RNA polymerase II to inhibit host protein synthesis

人类冠状病毒NL63 nsp1诱导RNA聚合酶II降解,抑制宿主蛋白质合成

阅读:6
作者:Kala Hardy, Michael Lutz, Toru Takimoto

Abstract

Coronavirus (CoV) nonstructural protein 1 (nsp1) is considered a pathogenic factor due to its ability to inhibit host antiviral responses by inducing general shutoff of host protein synthesis. Nsp1 is expressed by α- and β-CoVs, but its functions and strategies to induce host shutoff are not fully elucidated. We compared the nsp1s from two β-CoVs (SARS-CoV and SARS-CoV-2) and two α-CoVs (NL63 and 229E) and found that NL63 nsp1 has the strongest shutoff activity. Unlike SARS-CoV nsp1s, which bind to 40S ribosomes and block translation of cellular mRNA, NL63 nsp1 did not inhibit translation of mRNAs transfected into cells. Instead, NL63 nsp1 localized to the nucleus and specifically inhibited transcription of genes under an RNA polymerase II (RNAPII) promoter. Further analysis revealed that NL63 nsp1 induces degradation of the largest subunit of RNAPII, Rpb1. This degradation was detected regardless of the phosphorylation state of Rpb1 and was blocked by the proteasome inhibitor MG132. We also found that Rpb1 was ubiquitinated in NL63-infected cells, and inhibition of ubiquitination by a ubiquitin activating enzyme inhibitor (TAK243) prevented degradation of Rpb1 in virus-infected cells. These data reveal an unrecognized strategy of host shutoff by human α-CoV NL63: targeting host transcription by inducing Rpb1 degradation to prevent host protein expression. Our study indicates that viruses within the same family can use completely distinct mechanisms to regulate host antiviral responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。