Conclusion
2-AG reduces cardiac fibrosis via the TGF-β1/Smad2/3 pathway and is a potential pathway for the treatment of cardiac dysfunction in diabetic mice.
Methods
Male C57BL/6 mice were injected with 2-AG intraperitoneally for 4 weeks (10 micro g/kg/day) after 12 weeks of diabetic modeling. After 4 weeks, heart function was evaluated by echocardiography. Heart structure was assessed by hematoxylin and eosin staining. Cardiac fibrosis was analyzed using immunohistochemistry, Sirius red stain, and western blot.
Purpose
Diabetic cardiomyopathy (DM) is the cause of late cardiac dysfunction in diabetic patients. Myocardial fibrosis is the main pathological mechanism, and it is associated with transforming growth factor-β1(TGF-β1) expression up-regulation. 2-Arachidonoylglycerol (2-AG) is an endogenous cannabinoid that can effectively improve myocardial cell energy metabolism and cardiac function. Here, we evaluated the protective effect of 2-AG on diabetic cardiomyopathy.
Results
After modeling in diabetic mice, cardiac ultrasonography showed decreased cardiac function and pathological findings showed myocardial fibrosis. 2-AG could effectively inhibit the up-regulation of TGF-β1 and Smad2/3, reduce myocardial fibrosis, and ultimately improve cardiac function in diabetic mice.
