Integration and regression of implanted engineered human vascular networks during deep wound healing

深部伤口愈合过程中植入的工程人体血管网络的整合与退化

阅读:9
作者:Donny Hanjaya-Putra, Yu-I Shen, Abigail Wilson, Karen Fox-Talbot, Sudhir Khetan, Jason A Burdick, Charles Steenbergen, Sharon Gerecht

Abstract

The ability of vascularized constructs to integrate with tissues may depend on the kinetics and stability of vascular structure development. This study assessed the functionality and durability of engineered human vasculatures from endothelial progenitors when implanted in a mouse deep burn-wound model. Human vascular networks, derived from endothelial colony-forming cells in hyaluronic acid hydrogels, were transplanted into third-degree burns. On day 3 following transplantation, macrophages rapidly degraded the hydrogel during a period of inflammation; through the transitions from inflammation to proliferation (days 5-7), the host's vasculatures infiltrated the construct, connecting with the human vessels within the wound area. The growth of mouse vessels near the wound area supported further integration with the implanted human vasculatures. During this period, the majority of the vessels (∼60%) in the treated wound area were human. Although no increase in the density of human vessels was detected during the proliferative phase, they temporarily increased in size. This growth peaked at day 7, the middle of the proliferation stage, and then decreased by the end of the proliferation stage. As the wound reached the remodeling period during the second week after transplantation, the vasculatures including the transplanted human vessels generally regressed, and few microvessels, wrapped by mouse smooth muscle cells and with a vessel area less than 200 μm² (including the human ones), remained in the healed wound. Overall, this study offers useful insights for the development of vascularization strategies for wound healing and ischemic conditions, for tissue-engineered constructs, and for tissue regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。