Constitutive Androstane Receptor-Mediated Inhibition of Metformin on Phase II Metabolic Enzyme SULT2A1

二甲双胍通过组成型雄甾烷受体介导对 II 期代谢酶 SULT2A1 的抑制

阅读:8
作者:Xiaowen Hu, Mengsiyu Li, Chunxue Zhang, Shuguang Pang

Background

Metformin, as a first-line treatment for diabetes, interacts with many protein kinases and transcription factors which affect the expression of downstream target genes governing drug metabolism. Sulfotransferase, SULT2A1, one phase II metabolic enzyme, sulfonates both xenobiotic and endobiotic compounds to accelerate drug excretion. Herein, we designed experiments to investigate the effects and mechanisms of metformin on SULT2A1 expression in vitro.

Conclusion

The present study indicated that the activation of AMPK-CAR pathway mediated the suppression of SULT2A1 by metformin. Metformin may affect the metabolism and clearance of drugs which are SULT2A1 substrates. The results that emerged from this work provide substantial insights into an appropriate medication in the treatment of diabetes patients.

Methods

The hepatocellular carcinoma cell line, HepaRG, was cultured with different concentrations of metformin. The cell viability was measured using CCK8 kit. HepaRG was used to evaluate the protein expression of pregnane X receptor (PXR), the constitutive androstane receptor (CAR), SULT2A1, AMP-activated protein kinase (AMPK), and phosphorylation of AMPK (p-AMPK), respectively, at different concentrations of metformin with or without rifampin (human PXR activator) and CITCO (human CAR activator). The coregulators with CAR on SULT2A1 promoter response elements have also been characterized.

Results

We showed that metformin did not affect the basic expression of SULT2A1 but could suppress the expression of SULT2A1 induced by the activator of human CAR. Investigations revealed that metformin which could block CAR nuclear translocation further suppress SULT2A1. In addition, we found that the prevented CAR transfer into the nucleus by metformin was partially an AMPK-dependent event.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。