TRPA1 activation leads to neurogenic vasodilatation: involvement of reactive oxygen nitrogen species in addition to CGRP and NO

TRPA1 激活导致神经源性血管扩张:除 CGRP 和 NO 外,还涉及活性氧氮物质

阅读:8
作者:Aisah A Aubdool, Xenia Kodji, Nayaab Abdul-Kader, Richard Heads, Elizabeth S Fernandes, Stuart Bevan, Susan D Brain

Background and purpose

Transient receptor potential ankyrin-1 (TRPA1) activation is known to mediate neurogenic vasodilatation. We investigated the mechanisms involved in TRPA1-mediated peripheral vasodilatation in vivo using the TRPA1 agonist cinnamaldehyde. Experimental approach: Changes in vascular ear blood flow were measured in anaesthetized mice using laser Doppler flowmetry. Key

Purpose

Transient receptor potential ankyrin-1 (TRPA1) activation is known to mediate neurogenic vasodilatation. We investigated the mechanisms involved in TRPA1-mediated peripheral vasodilatation in vivo using the TRPA1 agonist cinnamaldehyde. Experimental approach: Changes in vascular ear blood flow were measured in anaesthetized mice using laser Doppler flowmetry. Key

Results

Topical application of cinnamaldehyde to the mouse ear caused a significant increase in blood flow in the skin of anaesthetized wild-type (WT) mice but not in TRPA1 knockout (KO) mice. Cinnamaldehyde-induced vasodilatation was inhibited by the pharmacological blockade of the potent microvascular vasodilator neuropeptide CGRP and neuronal NOS-derived NO pathways. Cinnamaldehyde-mediated vasodilatation was significantly reduced by treatment with reactive oxygen nitrogen species (RONS) scavenger such as catalase and the SOD mimetic TEMPOL, supporting a role of RONS in the downstream vasodilator TRPA1-mediated response. Co-treatment with a non-selective NOS inhibitor L-NAME and antioxidant apocynin further inhibited the TRPA1-mediated vasodilatation. Cinnamaldehyde treatment induced the generation of peroxynitrite that was blocked by the peroxynitrite scavenger FeTPPS and shown to be dependent on TRPA1, as reflected by an increase in protein tyrosine nitration in the skin of WT, but not in TRPA1 KO mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。