Structure and biosynthesis of carotenoids produced by a novel Planococcus sp. isolated from South Africa

分离自南非的新型浮球菌属产生的类胡萝卜素的结构和生物合成

阅读:7
作者:Anesu Conrad Moyo, Laurent Dufossé, Daniele Giuffrida, Leonardo Joaquim van Zyl, Marla Trindade

Background

The genus Planococcus is comprised of halophilic bacteria generally reported for the production of carotenoid pigments and biosurfactants. In previous work, we showed that the culturing of the orange-pigmented Planococcus sp. CP5-4 isolate increased the evaporation rate of industrial wastewater brine effluent, which we attributed to the orange pigment. This demonstrated the potential application of this bacterium for industrial brine effluent management in evaporation ponds for inland desalination plants. Here we identified a C30-carotenoid biosynthetic gene cluster responsible for pigment biosynthesis in Planococcus sp. CP5-4 through isolation of mutants and genome sequencing. We further compare the core genes of the carotenoid biosynthetic gene clusters identified from different Planococcus species' genomes which grouped into gene cluster families containing BGCs linked to different carotenoid product chemotypes. Lastly, LC-MS analysis of saponified and unsaponified pigment extracts obtained from cultures of Planococcus sp. CP5-4, revealed the structure of the main (predominant) glucosylated C30-carotenoid fatty acid ester produced by Planococcus sp. CP5-4.

Conclusion

We identified and characterized the carotenoid biosynthetic gene cluster and the C30-carotenoid compound produced by Planococcus sp. CP5-4. Mass-spectrometry guided analysis of the saponified and unsaponified pigment extracts showed that methyl 5-glucosyl-5, 6-dihydro-apo-4, 4'-lycopenoate esterified to heptadecatrienoic acid (C17:3). Furthermore, through phylogenetic analysis of the core carotenoid BGCs of Planococcus species we show that various C30-carotenoid product chemotypes, apart from methyl 5-glucosyl-5, 6-dihydro-apo-4, 4'-lycopenoate and 5-glucosyl-4, 4-diaponeurosporen-4'-ol-4-oic acid, may be produced that could offer opportunities for a variety of applications.

Results

Genome sequence comparisons of isolated mutant strains of Planococcus sp. CP5-4 showed deletions of 146 Kb and 3 Kb for the non-pigmented and "yellow" mutants respectively. Eight candidate genes, likely responsible for C30-carotenoid biosynthesis, were identified on the wild-type genome region corresponding to the deleted segment in the non-pigmented mutant. Six of the eight candidate genes formed a biosynthetic gene cluster. A truncation of crtP was responsible for the "yellow" mutant phenotype. Genome annotation revealed that the genes encoded 4,4'-diapolycopene oxygenase (CrtNb), 4,4'- diapolycopen-4-al dehydrogenase (CrtNc), 4,4'-diapophytoene desaturase (CrtN), 4,4'- diaponeurosporene oxygenase (CrtP), glycerol acyltransferase (Agpat), family 2 glucosyl transferase 2 (Gtf2), phytoene/squalene synthase (CrtM), and cytochrome P450 hydroxylase enzymes. Carotenoid analysis showed that a glucosylated C30-carotenoid fatty acid ester, methyl 5-(6-C17:3)-glucosyl-5, 6'-dihydro-apo-4, 4'-lycopenoate was the main carotenoid compound produced by Planococcus sp. CP5-4.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。