Background
Malaria is a devastating disease, transmitted by female Anopheles mosquitoes infected with Plasmodium parasites. Current insecticide-based strategies exist to control the spread of malaria by targeting vectors. However, the increase in insecticide resistance in vector populations hinder the efficacy of these
Conclusions
Overall, this study provides the first experimental evidence that supports ecdysone receptor as a potential target in the development of vector control measures targeting An. funestus.
Methods
RNA interference was used to reduce ecdysone receptor expression levels in An. funestus females and investigate how the above-mentioned phenotypes are influenced. Additionally, the expression levels of the ecdysone receptor, and reproduction genes lipophorin and vitellogenin receptor as well as the immune gene, leucine rich immune molecule 9 were determined in ecdysone receptor-depleted mosquitoes using quantitative polymerase chain reaction.
Results
Ecdysone receptor-depleted mosquitoes had a shorter lifespan, impaired oogenesis, were less fertile, and had reduced P. falciparum infection intensity. Conclusions: Overall, this study provides the first experimental evidence that supports ecdysone receptor as a potential target in the development of vector control measures targeting An. funestus.
