Human Milk Oligosaccharides Activate Epidermal Growth Factor Receptor and Protect Against Hypoxia-Induced Injuries in the Mouse Intestinal Epithelium and Caco2 Cells

母乳低聚糖激活表皮生长因子受体并保护小鼠肠上皮和 Caco2 细胞免受缺氧引起的损伤

阅读:12
作者:Chenyuan Wang, Ming Zhang, Huiyuan Guo, Jingyu Yan, Lingli Chen, Wendi Teng, Fazheng Ren, Yiran Li, Xifan Wang, Jie Luo, Yixuan Li

Background

Hypoxia-induced intestinal barrier injuries lead to necrotizing enterocolitis (NEC). Although NEC in preterm neonates is preventable by human milk oligosaccharides (HMOs), the underlying mechanism remains unknown.

Conclusion

Supplementing HMOs at 10-20 mg/mL into the formula for neonatal mice or media for Caco2 cells conferred protection against the hypoxia-induced injuries. The protection in the Caco2 cells was associated with an activation of EGFR.

Methods

NEC was induced by hypoxia and cold stress. Seventy C57BL/C pups (7-d-old) were divided into 5 groups and fed maternal breast milk (BM), formula alone (FF), or the formula added with HMOs at 5 (LHMO), 10 (MHMO), or 20 mg/mL (HHMO) for 3 d. Ileal hypoxia inducible factor 1α (HIF1α) and cleaved Caspase 3 were determined, along with staining for Ki-67 protein to labeled proliferative cells. In vitro, adherent Caco2 cells (undifferentiated, passage 14) were treated with HMOs, galacto-oligosaccharides, fructo-oligosaccharides, or mixed oligosaccharides at 10 mg/mL for 1 d exposed to 1% O2. Cell proliferation and apoptosis, along with phosphorylated epidermal growth factor receptor (P-EGFR) and 38KD MAPK (P-P38), were assayed in differentiated or undifferentiated Caco2 cells.

Objective

To reveal the role and mechanism of HMOs in protecting against hypoxia-induced injuries in intestinal epithelium of neonatal mice and cultured Caco2 cells.

Results

Compared with the FF-fed mice, those fed MHMO and HHMO had 52% lower (P < 0.05) NEC scores, 60-80% greater (P < 0.05) KI67-positive cell numbers, and 56-71% decreases (P < 0.05) in ileal HIF1α and cleaved Caspase 3 (56-71%). Compared with those untreated, the HMO-treated Caco2 cells displayed 60% greater (P < 0.05) proliferative activity and 19% lower (P < 0.05) apoptotic cells after the hypoxia exposure. The HMO treatment led to 58% or 10-fold increases (P < 0.05) of P-EGFR and 48-89% decreases (P < 0.05) of P-P38 in either differentiated or undifferentiated Caco2 cells compared with the controls.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。