Restoration of calcium-induced differentiation potential and tight junction formation in HaCaT keratinocytes by functional attenuation of overexpressed high mobility group box-1 protein

通过功能性衰减过表达的高迁移率族蛋白 B1 来恢复 HaCaT 角质形成细胞中钙诱导的分化潜能和紧密连接形成

阅读:5
作者:Fumika Tanaka, Minori Uda, Yuina Hirose, Yohei Hirai

Abstract

HaCaT cells have been widely used as undifferentiated epidermal keratinocytes, since these non-tumorigenic cells can be readily maintained in conventional medium and partly retain epidermal differentiation potential upon stimulation with high concentration of calcium. In contrast to primary epidermal keratinocytes, however, these cells never form tight junction (TJ), a specific structure in highly differentiated keratinocytes, solely by the differentiation stimulation. Here, we show that HaCaT cells secrete a considerable amount of high mobility group box-1 protein (HMGB1), one of major inflammatory mediator, which appeared to be responsible, at least in part, for such aberrant differentiation response. So far, inhibition of c-Jun N-terminal kinase (JNK) in high calcium medium has been supposed to be the only way to induce TJ formations in HaCaT cells; however, SP600125, a potent inhibitor of JNK showed cytostatic effects and clearly attenuated epidermal differentiation and stratification. In contrast, dipotassium glycyrrhizate (GK2), a soluble analogue of HMGB1-blocker Glycyrrhizin, down-regulated interferon-β, a typical inflammatory cytokine induced by secreted HMGB1, and accelerated differentiation responses to the calcium treatment in these cells. In addition, GK2-treatmenrt resulted in the formation of double cell layers in cultured HaCaT cells, where the stratified upper cells transiently accumulated TJ proteins at the cell-cell contact sites. These results highlight the importance of attenuation of secreted HMGB1-signals in cultured HaCaT cells for studies of functional keratinocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。