AGEs-induced MMP-9 activation mediated by Notch1 signaling is involved in impaired wound healing in diabetic rats

Notch1 信号介导的 AGE 诱导的 MMP-9 激活与糖尿病大鼠伤口愈合受损有关

阅读:8
作者:Ping Zhu, Chuping Chen, Daoai Wu, Guangshu Chen, Rongshao Tan, Jianmin Ran

Aims

To elucidate the relationship between advanced glycation end products (AGEs), Notch1 signaling, nuclear factor-kappa B (NF-κB), and matrix metalloproteinase-9 (MMP-9) in diabetic wound healing in vitro and in vivo.

Conclusions

These findings identified that activation of the Notch1/NF-κB/MMP-9 pathway, in part, mediates the repressive effects of AGEs on diabetic wound healing and that targeting this pathway may be a potential strategy to improve impaired diabetic wound healing.

Methods

We incubated primary keratinocytes with AGEs alone or AGEs along with γ-secretase inhibitor DAPT, and established diabetic rat wound model by intraperitoneal streptozotocin treatment. The Notch1 signaling components and MMP-9 expression were detected by qPCR, western blotting and gelatin zymography.

Results

The exposure of primary keratinocytes to AGEs led to a significant increase in Notch intracellular domain (NICD), Delta-like 4 (Dll4), and Hes1; however, Notch1 expression was inhibited by the RAGE siRNA. Furthermore, MMP-9 activation was up-regulated, secondary to AGEs treatment. In contrast, increased MMP-9 expression by AGEs-stimulation was eliminated after treatment with DAPT. NF-κB activation participated in the Notch1-modulated MMP-9 expression. Notably, in the diabetic animal model, inhibition of the Notch signaling pathway with DAPT attenuated NICD and MMP-9 overexpression, improved collagen accumulation, and ultimately accelerated diabetic wound healing. Conclusions: These findings identified that activation of the Notch1/NF-κB/MMP-9 pathway, in part, mediates the repressive effects of AGEs on diabetic wound healing and that targeting this pathway may be a potential strategy to improve impaired diabetic wound healing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。