Small extracellular vesicles promote invadopodia activity in glioblastoma cells in a therapy-dependent manner

小的细胞外囊泡以治疗依赖的方式促进胶质母细胞瘤细胞中的侵袭性足活性

阅读:7
作者:Clarissa A Whitehead, Haoyun Fang, Huaqi Su, Andrew P Morokoff, Andrew H Kaye, Eric Hanssen, Cameron J Nowell, Katharine J Drummond, David W Greening, Laura J Vella, Theo Mantamadiotis, Stanley S Stylli

Conclusions

Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.

Methods

Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied.

Purpose

The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell-cell communication.

Results

We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. Conclusions: Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。