Polarized localization of phosphatidylserine in the endothelium regulates Kir2.1

内皮细胞中磷脂酰丝氨酸的极化定位调节 Kir2.1

阅读:6
作者:Claire A Ruddiman, Richard Peckham, Melissa A Luse, Yen-Lin Chen, Maniselvan Kuppusamy, Bruce A Corliss, P Jordan Hall, Chien-Jung Lin, Shayn M Peirce, Swapnil K Sonkusare, Robert P Mecham, Jessica E Wagenseil, Brant E Isakson

Abstract

Lipid regulation of ion channels is largely explored using in silico modeling with minimal experimentation in intact tissue; thus, the functional consequences of these predicted lipid-channel interactions within native cellular environments remain elusive. The goal of this study is to investigate how lipid regulation of endothelial Kir2.1 - an inwardly rectifying potassium channel that regulates membrane hyperpolarization - contributes to vasodilation in resistance arteries. First, we show that phosphatidylserine (PS) localizes to a specific subpopulation of myoendothelial junctions (MEJs), crucial signaling microdomains that regulate vasodilation in resistance arteries, and in silico data have implied that PS may compete with phosphatidylinositol 4,5-bisphosphate (PIP2) binding on Kir2.1. We found that Kir2.1-MEJs also contained PS, possibly indicating an interaction where PS regulates Kir2.1. Electrophysiology experiments on HEK cells demonstrate that PS blocks PIP2 activation of Kir2.1 and that addition of exogenous PS blocks PIP2-mediated Kir2.1 vasodilation in resistance arteries. Using a mouse model lacking canonical MEJs in resistance arteries (Elnfl/fl/Cdh5-Cre), PS localization in endothelium was disrupted and PIP2 activation of Kir2.1 was significantly increased. Taken together, our data suggest that PS enrichment to MEJs inhibits PIP2-mediated activation of Kir2.1 to tightly regulate changes in arterial diameter, and they demonstrate that the intracellular lipid localization within the endothelium is an important determinant of vascular function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。