Repurposing the antipsychotic drug amisulpride for targeting synovial fibroblast activation in arthritis

将抗精神病药物氨磺必利重新用于治疗关节炎滑膜成纤维细胞活化

阅读:2
作者:Dimitra Papadopoulou ,Fani Roumelioti ,Christos Tzaferis ,Panagiotis Chouvardas ,Anna-Kathrine Pedersen ,Filippos Charalampous ,Eleni Christodoulou-Vafeiadou ,Lydia Ntari ,Niki Karagianni ,Maria C Denis ,Jesper V Olsen ,Alexios N Matralis ,George Kollias

Abstract

Synovial fibroblasts (SFs) are key pathogenic drivers in rheumatoid arthritis (RA). Their in vivo activation by TNF is sufficient to orchestrate full arthritic pathogenesis in animal models, and TNF blockade proved efficacious for a high percentage of patients with RA albeit coinducing rare but serious side effects. Aiming to find new potent therapeutics, we applied the L1000CDS2 search engine, to repurpose drugs that could reverse the pathogenic expression signature of arthritogenic human TNF-transgenic (hTNFtg) SFs. We identified a neuroleptic drug, namely amisulpride, which reduced SFs' inflammatory potential while decreasing the clinical score of hTNFtg polyarthritis. Notably, we found that amisulpride function was neither through its known targets dopamine receptors D2 and D3 and serotonin receptor 7 nor through TNF-TNF receptor I binding inhibition. Through a click chemistry approach, potentially novel targets of amisulpride were identified, which were further validated to repress hTNFtg SFs' inflammatory potential ex vivo (Ascc3 and Sec62), while phosphoproteomics analysis revealed that treatment altered important fibroblast activation pathways, such as adhesion. Thus, amisulpride could prove beneficial to patients experiencing RA and the often-accompanying comorbid dysthymia, reducing SF pathogenicity along with its antidepressive activity, serving further as a "lead" compound for the development of novel therapeutics against fibroblast activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。