The maintenance of oocytes in the mammalian ovary involves extreme protein longevity

哺乳动物卵巢中卵母细胞的维持需要极长的蛋白质寿命

阅读:6
作者:Katarina Harasimov #, Rebecca L Gorry #, Luisa M Welp #, Sarah Mae Penir #, Yehor Horokhovskyi #, Shiya Cheng, Katsuyoshi Takaoka, Alexandra Stützer, Ann-Sophie Frombach, Ana Lisa Taylor Tavares, Monika Raabe, Sara Haag, Debojit Saha, Katharina Grewe, Vera Schipper, Silvio O Rizzoli, Henning Urlaub,

Abstract

Women are born with all of their oocytes. The oocyte proteome must be maintained with minimal damage throughout the woman's reproductive life, and hence for decades. Here we report that oocyte and ovarian proteostasis involves extreme protein longevity. Mouse ovaries had more extremely long-lived proteins than other tissues, including brain. These long-lived proteins had diverse functions, including in mitochondria, the cytoskeleton, chromatin and proteostasis. The stable proteins resided not only in oocytes but also in long-lived ovarian somatic cells. Our data suggest that mammals increase protein longevity and enhance proteostasis by chaperones and cellular antioxidants to maintain the female germline for long periods. Indeed, protein aggregation in oocytes did not increase with age and proteasome activity did not decay. However, increasing protein longevity cannot fully block female germline senescence. Large-scale proteome profiling of ~8,890 proteins revealed a decline in many long-lived proteins of the proteostasis network in the aging ovary, accompanied by massive proteome remodeling, which eventually leads to female fertility decline.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。