Inhibition of ERK1/2 pathway suppresses adiponectin secretion via accelerating protein degradation by Ubiquitin-proteasome system: relevance to obesity-related adiponectin decline

ERK1/2 通路抑制通过加速泛素-蛋白酶体系统蛋白质降解来抑制脂联素分泌:与肥胖相关脂联素下降的相关性

阅读:5
作者:Dongfang Gu, Zhigang Wang, Xiaobing Dou, Ximei Zhang, Songtao Li, Lyndsey Vu, Tong Yao, Zhenyuan Song

Conclusions

Adipose tissue MEK/ERK1/2 activity can differentially regulate adiponectin gene expression and protein abundance and its suppression in obesity may play a mechanistic role in obesity-related plasma adiponectin decline.

Methods

C57 BL/6 mice exposed to a high-fat diet (HFD) were employed as animal obesity model. Both fully-differentiated 3T3-L1 and mouse primary adipocytes were used in the in vitro experiments.

Objective

Predominantly secreted by adipose tissue, adiponectin possesses insulin-sensitizing, anti-atherogenic, anti-inflammatory, and anti-angiogenic properties. Paradoxically, obesity is associated with declined plasma adiponectin levels; however, the underlying mechanisms remain elusive. In this study, we investigated the mechanistic involvement of MEK/ERK1/2 pathway in obesity-related adiponectin decrease. Materials/

Results

Obesity and plasma adiponectin decline induced by prolonged HFD exposure were associated with suppressed ERK1/2 activation in adipose tissue. In adipocytes, specific inhibition of MEK/ERK1/2 pathway decreased intracellular and secretory adiponectin levels, whereas adiponectin gene expression was increased, suggesting that MEK/ERK1/2 inhibition may promote adiponectin protein degradation. Cycloheximide (CHX)-chase assay revealed that MEK/ERK1/2 inhibition accelerated adiponectin protein degradation, which was prevented by MG132, a potent proteasome inhibitor. Immunoprecipitation assay showed that intracellular MEK/ERK1/2 activity was negatively associated with ubiquitinated adiponectin protein levels. Consistently, long-term HFD feeing in mice increased ubiquitinated adiponectin levels in the epididymal fat pads. Conclusions: Adipose tissue MEK/ERK1/2 activity can differentially regulate adiponectin gene expression and protein abundance and its suppression in obesity may play a mechanistic role in obesity-related plasma adiponectin decline.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。