Theophylline-ethylcellulose microparticles: screening of the process and formulation variables for preparation of sustained release particles

茶碱-乙基纤维素微粒:筛选制备缓释颗粒的工艺和配方变量

阅读:5
作者:Mitra Jelvehgari, Siavoush Dastmalch, Derafshi Nazila

Conclusion

The results showed that, generally, an increase in the ratio of drug to polymer resulted in a reduction in the release rate of the drug which may be attributed to the hydrophobic nature of the polymer. The release of theophylline was found to be diffusion controlled and was influenced by the drug to polymer ratio, loading efficiency, and particle size. The in vitro release profile could be modified by changing various processing and formulation parameters (as stirring rate, the volume of dispersing medium, and non-solvent concentration) to give a controlled release of drug from the microparticules.

Methods

Microspheres were prepared by water-in-oil-in-oil (W/O1/O2) emulsion-solvent diffusion (ESD). A mixed solvent system consisting of acetonitrile and dichloromethane in a 1:1 ratio and light liquid paraffin were chosen as primary and secondary oil phases, respectively. In the current study formulations with different drug/polymer ratios were prepared and characterized by drug loading, loading efficiency, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC).

Results

The best drug to polymer ratio was 0.5:1 (F2 formulation). F2 Formulation showed 29.53% of entrapment, loading efficiency of 88.59%, and mean particle size of 757.01 µm. SEM studies showed that the microspheres were spherical. FTIR, SEM, XRD and DSC showed that drug in the microspheres was stable and revealed crystallinity form.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。