EphrinB2 reverse signaling protects against capillary rarefaction and fibrosis after kidney injury

EphrinB2 反向信号可防止肾损伤后的毛细血管稀疏和纤维化

阅读:5
作者:Yujiro Kida, Nicholas Ieronimakis, Claudia Schrimpf, Morayma Reyes, Jeremy S Duffield

Abstract

Microvascular disease, a characteristic of acute and chronic kidney diseases, leads to rarefaction of peritubular capillaries (PTCs), promoting secondary ischemic injury, which may be central to disease progression. Bidirectional signaling by EphB4 receptor and ephrinB2 ligand is critical for angiogenesis during murine development, suggesting that ephrinB2 reverse signaling may have a role in renal angiogenesis induced by injury or fibrosis. Here, we found that ephrinB2 reverse signaling is activated in the kidney only after injury. In mice lacking the PDZ intracellular signaling domain of ephrinB2 (ephrinB2 ΔV), angiogenesis was impaired and kidney injury led to increased PTC rarefaction and fibrosis. EphrinB2 ΔV primary kidney pericytes migrated more than wild-type pericytes and were less able to stabilize capillary tubes in three-dimensional culture and less able to stimulate synthesis of capillary basement membrane. EphrinB2 ΔV primary kidney microvascular endothelial cells migrated and proliferated less than wild-type microvascular endothelial cells in response to vascular endothelial growth factor A and showed less internalization and activation of vascular endothelial growth factor receptor-2. Taken together, these results suggest that PDZ domain-dependent ephrinB2 reverse signaling protects against PTC rarefaction by regulating angiogenesis and vascular stability during kidney injury. Furthermore, this signaling in kidney pericytes protects against pericyte-to-myofibroblast transition and myofibroblast activation, thereby limiting fibrogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。