Cigarette smoke up-regulates PDE3 and PDE4 to decrease cAMP in airway cells

香烟烟雾上调 PDE3 和 PDE4,从而降低气道细胞中的 cAMP

阅读:7
作者:Haoxiao Zuo, Bing Han, Wilfred J Poppinga, Lennard Ringnalda, Loes E M Kistemaker, Andrew J Halayko, Reinoud Gosens, Viacheslav O Nikolaev, Martina Schmidt

Background and purpose

cAMP is a central second messenger that broadly regulates cell function and can underpin pathophysiology. In chronic obstructive pulmonary disease, a lung disease primarily provoked by cigarette smoke (CS), the activation of cAMP-dependent pathways, via inhibition of hydrolyzing PDEs, is a major therapeutic strategy. Mechanisms that disrupt cAMP signalling in airway cells, in particular regulation of endogenous PDEs, are poorly understood. Experimental approach: We used a novel Förster resonance energy transfer (FRET) based cAMP biosensor in mice in vivo, ex vivo precision cut lung slices (PCLS) and in human cell models, in vitro, to track the effects of CS exposure. Key

Purpose

cAMP is a central second messenger that broadly regulates cell function and can underpin pathophysiology. In chronic obstructive pulmonary disease, a lung disease primarily provoked by cigarette smoke (CS), the activation of cAMP-dependent pathways, via inhibition of hydrolyzing PDEs, is a major therapeutic strategy. Mechanisms that disrupt cAMP signalling in airway cells, in particular regulation of endogenous PDEs, are poorly understood. Experimental approach: We used a novel Förster resonance energy transfer (FRET) based cAMP biosensor in mice in vivo, ex vivo precision cut lung slices (PCLS) and in human cell models, in vitro, to track the effects of CS exposure. Key

Results

Under fenoterol stimulation, FRET responses to cilostamide were significantly increased in in vivo, ex vivo PCLS exposed to CS and in human airway smooth muscle cells exposed to CS extract. FRET signals to rolipram were only increased in the in vivo CS model. Under basal conditions, FRET responses to cilostamide and rolipram were significantly increased in in vivo, ex vivo PCLS exposed to CS. Elevated FRET signals to rolipram correlated with a protein up-regulation of PDE4 subtypes. In ex vivo PCLS exposed to CS extract, rolipram reversed down-regulation of ciliary beating frequency, whereas only cilostamide significantly increased airway relaxation of methacholine pre-contracted airways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。