Modulation of Inflamed Synovium Improves Migration of Mesenchymal Stromal Cells in Vitro Through Anti-Inflammatory Macrophages

调节发炎的滑膜可通过抗炎巨噬细胞改善间充质基质细胞的体外迁移

阅读:5
作者:Marinus A Wesdorp, Yvonne M Bastiaansen-Jenniskens, Serdar Capar, Jan A N Verhaar, R Narcisi, Gerjo J V M Van Osch

Conclusion

Macrophages secrete factors that stimulate the migration of MSCs. Modulation with TAA increased specifically the ability of anti-inflammatory macrophages to stimulate migration, indicating that they play an important role in secreting factors to attract MSCs. Modulating inflammation and thereby improving migration could be used in approaches based on endogenous repair of full-thickness cartilage defects.

Objective

Inflammation is known to negatively affect cartilage repair. However, it is unclear how inflammation influences the migration of mesenchymal stromal cells (MSCs) from the underlying bone marrow into the defect. We therefore aimed to investigate how synovial inflammation influences MSC migration, and whether modulation of inflammation with triamcinolone acetonide (TAA) may influence migration. Design: Inflamed human osteoarthritic synovium, M(IFNγ+TNFα) pro-inflammatory macrophages, M(IL4) repair macrophages, M(IL10) anti-inflammatory macrophages, or synovial fibroblasts were cultured with/without TAA. Conditioned medium (CM) was harvested after 24 hours, and the effect on MSC migration was studied using a Boyden chamber assay. Inflammation was evaluated with gene expression and flow cytometry analysis.

Results

Synovium CM increased MSC migration. Modulation of synovial inflammation with TAA further increased migration 1.5-fold (P < 0.01). TAA significantly decreased TNFA, IL1B, and IL6 gene expression in synovium explants and increased CD163, a gene associated with anti-inflammatory macrophages. TAA treatment decreased the percentage of CD14+/CD80+ and CD14+/CD86+ pro-inflammatory macrophages and increased the percentage of CD14+/CD163+ anti-inflammatory macrophages in synovium explants. Interestingly, MSC migration was specifically enhanced by medium conditioned by M(IL4) macrophages and by M(IL10) macrophages treated with TAA, and unaffected by CM from M(IFNγ+TNFα) macrophages and synovial fibroblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。