FGFR2 gene amplification in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547

胃癌中的 FGFR2 基因扩增可预测对选择性 FGFR 抑制剂 AZD4547 的敏感性

阅读:6
作者:Liang Xie, Xinying Su, Lin Zhang, Xiaolu Yin, Lili Tang, Xiuhua Zhang, Yanping Xu, Zeren Gao, Kunji Liu, Minhua Zhou, Beirong Gao, Danping Shen, Lianhai Zhang, Jiafu Ji, Paul R Gavine, Jingchuan Zhang, Elaine Kilgour, Xiaolin Zhang, Qunsheng Ji

Conclusion

FGFR2 pathway activation is required for driving growth and survival of gastric cancer carrying FGFR2 gene amplification both in vitro and in vivo. Our data support therapeutic intervention with FGFR inhibitors, such as AZD4547, in patients with gastric cancer carrying FGFR2 gene amplification.

Purpose

FGFR gene aberrations are associated with tumor growth and survival. We explored the role of FGFR2 amplification in gastric cancer and the therapeutic potential of AZD4547, a potent and selective ATP-competitive receptor tyrosine kinase inhibitor of fibroblast growth factor receptor (FGFR)1-3, in patients with FGFR2-amplified gastric cancer. Experimental design: Array-comparative genomic hybridization and FISH were used to identify FGFR2 amplification in gastric cancer patient tumor samples. The effects of FGFR2 modulation were investigated in gastric cancer cells with FGFR2 amplification and in patient-derived gastric cancer xenograft (PDGCX) models using two approaches: inhibition with AZD4547 and short hairpin RNA (shRNA) knockdown of FGFR2.

Results

Amplification of the FGFR2 gene was identified in a subset of Chinese and Caucasian patients with gastric cancer. Gastric cancer cell lines SNU-16 and KATOIII, carrying the amplified FGFR2 gene, were extremely sensitive to AZD4547 in vitro with GI50 values of 3 and 5 nmol/L, respectively. AZD4547 effectively inhibited phosphorylation of FGFR2 and its downstream signaling molecules and induced apoptosis in SNU-16 cells. Furthermore, inhibition of FGFR2 signaling by AZD4547 resulted in significant dose-dependent tumor growth inhibition in FGFR2-amplified xenograft (SNU-16) and PDGCX models (SGC083) but not in nonamplified models. shRNA knockdown of FGFR2 similarly inhibited tumor growth in vitro and in vivo. Finally, compared with monotherapy, we showed enhancement of in vivo antitumor efficacy using AZD4547 in combination with chemotherapeutic agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。