CREB activation drives acinar to ductal reprogramming and promote pancreatic cancer progression in animal models of alcoholic chronic pancreatitis

CREB 激活驱动腺泡至导管重编程并促进酒精性慢性胰腺炎动物模型中的胰腺癌进展

阅读:6
作者:Supriya Srinivasan, Siddharth Mehra, Anna Bianchi, Samara Singh, Austin R Dosch, Haleh Amirian, Sudhakar Jinka, Varunkumar Krishnamoorthy, Iago De Castro Silva, Edmond Worley Iii Box, Vanessa Garrido, Tulasigeri M Totiger, Zhiqun Zhou, Yuguang Ban, Jashodeep Datta, Michael VanSaun, Nipun Merchant, N

Aims

In vivo induction of alcoholic chronic pancreatitis (ACP) causes significant acinar damage, increased fibroinflammatory response, and heightened activation of cyclic response element binding protein 1 (CREB) when compared with alcohol (A) or chronic pancreatitis (CP) mediated pancreatic damage. However, the study elucidating the cooperative interaction between CREB and the oncogenic Kras G12D/+ (Kras*) in promoting pancreatic cancer progression with ACP remains unexplored.

Background and aims

In vivo induction of alcoholic chronic pancreatitis (ACP) causes significant acinar damage, increased fibroinflammatory response, and heightened activation of cyclic response element binding protein 1 (CREB) when compared with alcohol (A) or chronic pancreatitis (CP) mediated pancreatic damage. However, the study elucidating the cooperative interaction between CREB and the oncogenic Kras G12D/+ (Kras*) in promoting pancreatic cancer progression with ACP remains unexplored.

Conclusions

Our findings demonstrate that CREB cooperates with Kras* to perpetuate an irreversible ADM and PanIN formation. Moreover, CREB sustains oncogenic activity to promote the progression of premalignant lesions toward cancer in the presence of ACP.

Methods

Experimental ACP induction was established in multiple mouse models, followed by euthanization of the animals at various time intervals during the recovery periods. Tumor latency was determined in these mice cohorts. Here, we established CREB deletion (Creb fl/fl ) in Ptf1a CreERTM/+ ;LSL-Kras G12D+/-(KC) genetic mouse models (KCC-/-). Western blot, phosphokinase array, and qPCR were used to analyze the pancreata of Ptf1a CreERTM+/-, KC and KCC -/- mice. The pancreata of ACP-induced KC mice were subjected to single-cell RNA sequencing (scRNAseq). Further studies involved conducting lineage tracing and acinar cell explant cultures.

Results

ACP induction in KC mice had detrimental effects on the pancreatic damage repair mechanism. The persistent existence of acinar cell-derived ductal lesions demonstrated a prolonged state of hyperactivated CREB. Persistent CREB activation leads to acinar cell reprogramming and increased pro-fibrotic inflammation in KC mice. Acinar-specific Creb ablation reduced advanced PanINs lesions, hindered tumor progression, and restored acinar cell function in ACP-induced mouse models. Conclusions: Our findings demonstrate that CREB cooperates with Kras* to perpetuate an irreversible ADM and PanIN formation. Moreover, CREB sustains oncogenic activity to promote the progression of premalignant lesions toward cancer in the presence of ACP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。