1α,25-Dihydroxyvitamin D3 prevents renal oxidative damage via the PARP1/SIRT1/NOX4 pathway in Zucker diabetic fatty rats

1α,25-二羟基维生素 D3 通过 PARP1/SIRT1/NOX4 通路预防 Zucker 糖尿病肥胖大鼠肾脏氧化损伤

阅读:8
作者:Dongxia Wang, Yanyan Li, Ning Wang, Gang Luo, Jun Wang, Can Luo, Wei Yu, Liping Hao

Abstract

Diabetic nephropathy (DN) is one of the most important renal complications associated with diabetes, and the mechanisms are yet to be fully understood. To date, few studies have shown the antioxidant effects of 1α,25-dihydroxyvitamin-D3 [1,25(OH)2D3] on hyperglycemia-induced renal injury. The aim of the present study was to explore the potential mechanism by which 1,25(OH)2D3 reduced oxidative stress in diabetic rat kidneys. In this study, we established a vitamin D-deficient spontaneous diabetes model: 5-6 wk of age Zucker diabetic fatty (ZDF) rats were treated with or without 1,25(OH)2D3 for 7 wk, age-matched Zucker lean rats served as control. Results showed that ZDF rats treated with 1,25(OH)2D3 had decreased body mass, food intake, water intake, and urine volume. 1,25(OH)2D3 ameliorated urine glucose, blood glucose and abnormal glucose tolerance. Additionally, 1,25(OH)2D3 significantly lowered microalbuminuria, decreased the glomerular basement membrane thickness, and in some degree inhibited glomerular hypertrophy, mesangial expansion, and tubular dilatation. Furthermore, 1,25(OH)2D3 attenuated renal oxidative damage, as reflected by the levels of malondialdehyde, reduced glutathione, 4-hydroxynonenal, 8-hydroxy-2'-deoxyguanosine, and reactive oxygen species production, and notably inhibited poly(ADP-ribose) polymerase-1 (PARP1), activated sirtuin 1 (SIRT1), and decreased the expression of NADPH oxidase 4 (NOX4). Of interest, the abovementioned proteins could be involved in the antioxidant mechanism of 1,25(OH)2D3 in diabetic rat kidneys. Our study showed that oxidative stress might be a major contributor to DN pathogenesis and uncovered the antioxidant role of 1,25(OH)2D3 in diabetic nephropathy that was associated with the PARP1/SIRT1/ NOX4 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。