Synthesis and antimalarial efficacy of two-carbon-linked, artemisinin-derived trioxane dimers in combination with known antimalarial drugs

双碳连接青蒿素衍生的三氧杂环己烷二聚体的合成及与已知抗疟药物联合使用的抗疟功效

阅读:6
作者:Bryan T Mott, Abhai Tripathi, Maxime A Siegler, Cathy D Moore, David J Sullivan, Gary H Posner

Abstract

Malaria continues to be a difficult disease to eradicate largely because of the widespread populations it affects and the resistance that malaria parasites have developed against once very potent therapies. The natural product artemisinin has been a boon for antimalarial chemotherapy, as artemisinin combination therapy (ACT) has become the first line of chemotherapy. Because the threat of resistance is always on the horizon, it is imperative to continually identify new treatments, comprising both advanced analogues of all antimalarial drugs, especially artemisinin, and the exploration of novel combinations, ideally with distinct mechanisms of action. Here we report for the first time the synthesis of a series of two-carbon-linked artemisinin-derived dimers, their unique structural features, and demonstration of their antimalarial efficacy via single oral dose administration in two 60-day survival studies of Plasmodium berghei infected mice. Several of the new endoperoxide chemical entities consistently demonstrated excellent antimalarial efficacy, and combinations with two non-peroxide antimalarial drugs have been studied.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。