Predicting Effective Diffusivity of Porous Media from Images by Deep Learning

利用深度学习从图像预测多孔介质的有效扩散率

阅读:6
作者:Haiyi Wu, Wen-Zhen Fang, Qinjun Kang, Wen-Quan Tao, Rui Qiao

Abstract

We report the application of machine learning methods for predicting the effective diffusivity (De) of two-dimensional porous media from images of their structures. Pore structures are built using reconstruction methods and represented as images, and their effective diffusivity is computed by lattice Boltzmann (LBM) simulations. The datasets thus generated are used to train convolutional neural network (CNN) models and evaluate their performance. The trained model predicts the effective diffusivity of porous structures with computational cost orders of magnitude lower than LBM simulations. The optimized model performs well on porous media with realistic topology, large variation of porosity (0.28-0.98), and effective diffusivity spanning more than one order of magnitude (0.1 ≲ De < 1), e.g., >95% of predicted De have truncated relative error of <10% when the true De is larger than 0.2. The CNN model provides better prediction than the empirical Bruggeman equation, especially for porous structure with small diffusivity. The relative error of CNN predictions, however, is rather high for structures with De < 0.1. To address this issue, the porosity of porous structures is encoded directly into the neural network but the performance is enhanced marginally. Further improvement, i.e., 70% of the CNN predictions for structures with true De < 0.1 have relative error <30%, is achieved by removing trapped regions and dead-end pathways using a simple algorithm. These results suggest that deep learning augmented by field knowledge can be a powerful technique for predicting the transport properties of porous media. Directions for future research of machine learning in porous media are discussed based on detailed analysis of the performance of CNN models in the present work.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。