Preventing autosomal-dominant hearing loss in Bth mice with CRISPR/CasRx-based RNA editing

利用基于 CRISPR/CasRx 的 RNA 编辑预防 Bth 小鼠的常染色体显性听力损失

阅读:7
作者:Ziwen Zheng #, Guo Li #, Chong Cui #, Fang Wang, Xiaohan Wang, Zhijiao Xu, Huiping Guo, Yuxin Chen, Honghai Tang, Daqi Wang, Mingqian Huang, Zheng-Yi Chen, Xingxu Huang, Huawei Li, Geng-Lin Li, Xiaoxiang Hu, Yilai Shu

Abstract

CRISPR/RfxCas13d (CasRx) editing system can specifically and precisely cleave single-strand RNAs, which is a promising treatment for various disorders by downregulation of related gene expression. Here, we tested this RNA-editing approach on Beethoven (Bth) mice, an animal model for human DFNA36 due to a point mutation in Tmc1. We first screened 30 sgRNAs in cell cultures and found that CasRx with sgRNA3 reduced the Tmc1Bth transcript by 90.8%, and the Tmc1 wild type transcript (Tmc1+) by 44.3%. We then injected a newly developed AAV vector (AAV-PHP.eB) based CasRx into the inner ears of neonatal Bth mice, and we found that Tmc1Bth was reduced by 70.2% in 2 weeks with few off-target effects in the whole transcriptome. Consistently, we found improved hair cell survival, rescued hair bundle degeneration, and reduced mechanoelectrical transduction current. Importantly, the hearing performance, measured in both ABR and DPOAE thresholds, was improved significantly in all ages over 8 weeks. We, therefore, have validated the CRISPR/CasRx-based RNA editing strategy in treating autosomal-dominant hearing loss, paving way for its further application in many other hereditary diseases in hearing and beyond.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。