Charophytic Green Algae Encode Ancestral Polymerase IV/Polymerase V Subunits and a CLSY/DRD1 Homolog

轮藻绿藻编码祖先聚合酶 IV/聚合酶 V 亚基和 CLSY/DRD1 同源物

阅读:6
作者:Tania Chakraborty, Joshua T Trujillo, Timmy Kendall, Rebecca A Mosher

Abstract

In flowering plants, euchromatic transposons are transcriptionally silenced by RNA-directed DNA Methylation, a small RNA-guided de novo methylation pathway. RNA-directed DNA Methylation requires the activity of the RNA Polymerases IV and V, which produce small RNA precursors and noncoding targets of small RNAs, respectively. These polymerases are distinguished from Polymerase II by multiple plant-specific paralogous subunits. Most RNA-directed DNA Methylation components are present in all land plants, and some have been found in the charophytic green algae, a paraphyletic group that is sister to land plants. However, the evolutionary origin of key RNA-directed DNA Methylation components, including the two largest subunits of Polymerase IV and Polymerase V, remains unclear. Here, we show that multiple lineages of charophytic green algae encode a single-copy precursor of the largest subunits of Polymerase IV and Polymerase V, resolving the two presumed duplications in this gene family. We further demonstrate the presence of a Polymerase V-like C-terminal domain, suggesting that the earliest form of RNA-directed DNA Methylation utilized a single Polymerase V-like polymerase. Finally, we reveal that charophytic green algae encode a single CLSY/DRD1-type chromatin remodeling protein, further supporting the presence of a single specialized polymerase in charophytic green algae.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。