β-Amyloid species production and tau phosphorylation in iPSC-neurons with reference to neuropathologically characterized matched donor brains

参考神经病理学特征匹配的供体大脑,iPSC 神经元中 β-淀粉样蛋白的产生和 tau 磷酸化

阅读:7
作者:Derek H Oakley, Mirra Chung, Sara Abrha, Bradley T Hyman, Matthew P Frosch

Abstract

A basic assumption underlying induced pluripotent stem cell (iPSC) models of neurodegeneration is that disease-relevant pathologies present in brain tissue are also represented in donor-matched cells differentiated from iPSCs. However, few studies have tested this hypothesis in matched iPSCs and neuropathologically characterized donated brain tissues. To address this, we assessed iPSC-neuron production of β-amyloid (Aβ) Aβ40, Aβ42, and Aβ43 in 24 iPSC lines matched to donor brains with primary neuropathologic diagnoses of sporadic AD (sAD), familial AD (fAD), control, and other neurodegenerative disorders. Our results demonstrate a positive correlation between Aβ43 production by fAD iPSC-neurons and Aβ43 accumulation in matched brain tissues but do not reveal a substantial correlation in soluble Aβ species between control or sAD iPSC-neurons and matched brains. However, we found that the ApoE4 genotype is associated with increased Aβ production by AD iPSC-neurons. Pathologic tau phosphorylation was found to be increased in AD and fAD iPSC-neurons compared to controls and positively correlated with the relative abundance of longer-length Aβ species produced by these cells. Taken together, our results demonstrate that sAD-predisposing genetic factors influence iPSC-neuron phenotypes and that these cells are capturing disease-relevant and patient-specific components of the amyloid cascade.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。