Carbonyl cyanide 3-chlorophenylhydrazone induced the imbalance of mitochondrial homeostasis in the liver of Megalobrama amblycephala: A dynamic study

羰基氰化物3-氯苯腙诱导团头鲂肝脏线粒体稳态失衡的动态研究

阅读:6
作者:Ling Zhang, Xiao-Chuan Zheng, Yang-Yang Huang, Ya-Ping Ge, Miao Sun, Wei-Liang Chen, Wen-Bin Liu, Xiang-Fei Li

Abstract

Carbonylcyanide-3-chlorophenylhydrazone (CCCP) is a protonophore, which causes uncoupling of proton gradient in the inner mitochondrial membrane, thus inhibiting the rate of ATP synthesis. However, this information is manly derived from mammals, while its effects on the mitochondrial homeostasis of aquatic animals are largely unknown. In this study, the mitochondrial homeostasis of a carp fish Megalobrama amblycephala was investigated systematically in a time-course manner by using CCCP. Fish was injected intraperitoneally with CCCP (1.8 mg/kg per body weight) and DMSO (control), respectively. The results showed that CCCP treatment induced hepatic mitochondrial oxidative stress, as was evidenced by the significantly increased MDA and PC contents coupled with the decreased SOD and MnSOD activities. Meanwhile, mitochondrial fission was up-regulated remarkably characterized by the increased transcriptions of Drp-1, Fis-1 and Mff. However, the opposite was true for mitochondrial fusion, as was indicative of the decreased transcriptions of Mfn-1, Mfn-2 and Opa-1. This consequently triggered mitophagy, as was supported by the accumulated mitochondrial autophagosomes and the increased protein levels of PINK1, Parkin, LC3-II and P62 accompanied by the increased LC3-II/LC3-I ratio. Mitochondrial biogenesis and function both decreased significantly addressed by the decreased activities of CS, SDH and complex I, IV and V, as well as the protein levels of PGC-1β coupled with the decreased transcriptions of TFAM, COX-1, COX-2 and ATP-6. Unlikely, DMSO treatment exerted little influence. Overall, CCCP treatment resulted in the imbalance of mitochondrial homeostasis in Megalobrama amblycephala by promoting mitochondrial oxidative stress, fission and mitophagy, but depressing mitochondrial fusion, biogenesis and function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。