Recombinant thrombomodulin protects against LPS-induced acute respiratory distress syndrome via preservation of pulmonary endothelial glycocalyx

重组血栓调节蛋白通过保存肺内皮糖萼预防 LPS 诱发的急性呼吸窘迫综合征

阅读:7
作者:Kodai Suzuki, Hideshi Okada, Genzou Takemura, Chihiro Takada, Hiroyuki Tomita, Hirohisa Yano, Isamu Muraki, Ryogen Zaikokuji, Ayumi Kuroda, Hirotsugu Fukuda, Ayane Nishio, Shigeo Takashima, Akio Suzuki, Nagisa Miyazaki, Tetsuya Fukuta, Noriaki Yamada, Takatomo Watanabe, Tomoaki Doi, Takahiro Yoshida

Background and purpose

Disruption of the endothelial glycocalyx is causally related to microvascular endothelial dysfunction, a characteristic of sepsis-induced acute respiratory distress syndrome (ARDS). Recombinant human thrombomodulin (rhTM) attenuates vascular endothelial injuries, but the underlying mechanism remains elusive. Here, we investigated the structural basis and molecular mechanisms of rhTM effects on vascular endothelial injury in a model of sepsis. Experimental approach: LPS (20 mg·kg-1 ) was intraperitoneally injected into 10-week-old male C57BL6 mice, and saline or rhTM was intraperitoneally injected 3 and 24 h after LPS injection. Using serum and/or lung tissue, histological, ultrastructural, and microarray analyses were performed. Key

Purpose

Disruption of the endothelial glycocalyx is causally related to microvascular endothelial dysfunction, a characteristic of sepsis-induced acute respiratory distress syndrome (ARDS). Recombinant human thrombomodulin (rhTM) attenuates vascular endothelial injuries, but the underlying mechanism remains elusive. Here, we investigated the structural basis and molecular mechanisms of rhTM effects on vascular endothelial injury in a model of sepsis. Experimental approach: LPS (20 mg·kg-1 ) was intraperitoneally injected into 10-week-old male C57BL6 mice, and saline or rhTM was intraperitoneally injected 3 and 24 h after LPS injection. Using serum and/or lung tissue, histological, ultrastructural, and microarray analyses were performed. Key

Results

Survival rate of rhTM-treated mice was significantly higher than that of control mice 48 h after LPS injection. Serum concentrations of IL-6 and high-mobility group box 1 were lower in the rhTM-treated group than in the control. Injury to the endothelial glycocalyx in pulmonary capillaries was attenuated by rhTM treatment. Gene set enrichment analysis revealed up-regulation of gene sets corresponding to cell proliferation/differentiation and anti-inflammation, such as the TGF-β pathway, and negative regulation of IL-6, upon rhTM treatment. Gene expression of heparan sulfate 6-O-sulfotransferase 1 and endothelial cell-specific molecule 1 (components of the endothelial glycocalyx) was significantly preserved by rhTM treatment, and their protein expression levels were maintained in endothelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。