Next-generation sequencing reveals that miR-16-5p, miR-19a-3p, miR-451a, and miR-25-3p cargo in plasma extracellular vesicles differentiates sedentary young males from athletes

下一代测序显示,血浆细胞外囊泡中的 miR-16-5p、miR-19a-3p、miR-451a 和 miR-25-3p 货物可将久坐的年轻男性与运动员区分开来

阅读:6
作者:Manuel Fernandez-Sanjurjo, Paola Pinto-Hernandez, Alberto Dávalos, Ángel Enrique Díaz-Martínez, Roberto Martín-Hernández, Juan Castilla-Silgado, Celia Toyos-Rodríguez, Martin Whitham, Laura Amado-Rodríguez, Guillermo Muñiz-Albaiceta, Nicolás Terrados, Benjamín Fernández-García, Eduardo Iglesias-Guti

Abstract

A sedentary lifestyle and Olympic participation are contrary risk factors for global mortality and incidence of cancer and cardiovascular disease. Extracellular vesicle miRNAs have been described to respond to exercise. No molecular characterization of young male sedentary people versus athletes is available; so, our aim was to identify the extracellular vesicle miRNA profile of chronically trained young endurance and resistance male athletes compared to their sedentary counterparts. A descriptive case-control design was used with 16 sedentary young men, 16 Olympic male endurance athletes, and 16 Olympic male resistance athletes. Next-generation sequencing and RT-qPCR and external and internal validation were performed in order to analyze extracellular vesicle miRNA profiles. Endurance and resistance athletes had significant lower levels of miR-16-5p, miR-19a-3p, and miR-451a compared to sedentary people. Taking all together, exercise-trained miRNA profile in extracellular vesicles provides a differential signature of athletes irrespective of the type of exercise compared to sedentary people. Besides, miR-25-3p levels were specifically lower in endurance athletes which defines its role as a specific responder in this type of athletes. In silico analysis of this profile suggests a role in adaptive energy metabolism in this context that needs to be experimentally validated. Therefore, this study provides for the first time basal levels of circulating miRNA in extracellular vesicles emerge as relevant players in intertissue communication in response to chronic exercise exposure in young elite male athletes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。