Increased Ca2+ signaling in NRXN1α+/- neurons derived from ASD induced pluripotent stem cells

来自 ASD 诱导的多能干细胞的 NRXN1α+/- 神经元中的 Ca2+ 信号增强

阅读:6
作者:Sahar Avazzadeh, Katya McDonagh, Jamie Reilly, Yanqin Wang, Stephanie D Boomkamp, Veronica McInerney, Janusz Krawczyk, Jacqueline Fitzgerald, Niamh Feerick, Matthew O'Sullivan, Amirhossein Jalali, Eva B Forman, Sally A Lynch, Sean Ennis, Nele Cosemans, Hilde Peeters, Peter Dockery, Timothy O'Brien, 

Background

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a high co-morbidity of epilepsy and associated with hundreds of rare risk factors. NRXN1 deletion is among the commonest rare genetic factors shared by ASD, schizophrenia, intellectual disability, epilepsy, and developmental delay. However, how NRXN1 deletions lead to different clinical symptoms is unknown. Patient-derived cells are essential to investigate the functional consequences of NRXN1 lesions to human neurons in different diseases.

Conclusions

This is the first report to show that human NRXN1α+/- neurons derived from ASD patients' iPSCs present novel phenotypes of upregulated VGCCs and increased Ca2+ transients, which may facilitate the development of drug screening assays for the treatment of ASD.

Methods

Skin biopsies were donated by five healthy donors and three ASD patients carrying NRXN1α+/- deletions. Seven control and six NRXN1α+/- iPSC lines were derived and differentiated into day 100 cortical excitatory neurons using dual SMAD inhibition. Calcium (Ca2+) imaging was performed using Fluo4-AM, and the properties of Ca2+ transients were compared between two groups of neurons. Transcriptome analysis was carried out to undercover molecular pathways associated with NRXN1α+/- neurons.

Results

NRXN1α+/- neurons were found to display altered calcium dynamics, with significantly increased frequency, duration, and amplitude of Ca2+ transients. Whole genome RNA sequencing also revealed altered ion transport and transporter activity, with upregulated voltage-gated calcium channels as one of the most significant pathways in NRXN1α+/- neurons identified by STRING and GSEA analyses. Conclusions: This is the first report to show that human NRXN1α+/- neurons derived from ASD patients' iPSCs present novel phenotypes of upregulated VGCCs and increased Ca2+ transients, which may facilitate the development of drug screening assays for the treatment of ASD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。