Bladder dysfunction in a transgenic mouse model of multiple system atrophy

多系统萎缩转基因小鼠模型中的膀胱功能障碍

阅读:8
作者:Mathieu Boudes, Pieter Uvin, Silvia Pinto, Thomas Voets, Clare J Fowler, Gregor K Wenning, Dirk De Ridder, Nadia Stefanova

Abstract

Multiple system atrophy (MSA) is an adult-onset neurodegenerative disorder presenting with motor impairment and autonomic dysfunction. Urological function is altered in the majority of MSA patients, and urological symptoms often precede the motor syndrome. To date, bladder function and structure have never been investigated in MSA models. We aimed to test bladder function in a transgenic MSA mouse featuring oligodendroglial α-synucleinopathy and define its applicability as a preclinical model to study urological failure in MSA. Experiments were performed in proteolipid protein (PLP)-human α-synuclein (hαSyn) transgenic and control wild-type mice. Diuresis, urodynamics, and detrusor strip contractility were assessed to characterize the urological phenotype. Bladder morphology and neuropathology of the lumbosacral intermediolateral column and the pontine micturition center (PMC) were analyzed in young and aged mice. Urodynamic analysis revealed a less efficient and unstable bladder in MSA mice with increased voiding contraction amplitude, higher frequency of nonvoiding contractions, and increased postvoid residual volume. MSA mice bladder walls showed early detrusor hypertrophy and age-related urothelium hypertrophy. Transgenic hαSyn expression was detected in Schwann cells ensheathing the local nerve fibers in the lamina propria and muscularis of MSA bladders. Early loss of parasympathetic outflow neurons and delayed degeneration of the PMC accompanied the urological deficits in MSA mice. PLP-hαSyn mice recapitulate major urological symptoms of human MSA that may be linked to αSyn-related central and peripheral neuropathology and can be further used as a preclinical model to decipher pathomechanisms of MSA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。