Selective activation of protein kinase C∊ in mitochondria is neuroprotective in vitro and reduces focal ischemic brain injury in mice

线粒体中蛋白激酶 C∊ 的选择性激活具有体外神经保护作用,并可减少小鼠局灶性缺血性脑损伤

阅读:5
作者:Xiaoyun Sun, Grant R Budas, Lijun Xu, George E Barreto, Daria Mochly-Rosen, Rona G Giffard

Abstract

Activation of protein kinase C∊ (PKC∊) confers protection against neuronal ischemia/reperfusion. Activation of PKC∊ leads to its translocation to multiple intracellular sites, so a mitochondria-selective PKC∊ activator was used to test the importance of mitochondrial activation to the neuroprotective effect of PKC∊. PKC∊ can regulate key cytoprotective mitochondrial functions, including electron transport chain activity, reactive oxygen species (ROS) generation, mitochondrial permeability transition, and detoxification of reactive aldehydes. We tested the ability of mitochondria-selective activation of PKC∊ to protect primary brain cell cultures or mice subjected to ischemic stroke. Pretreatment with either general PKC∊ activator peptide, TAT-Ψ∊RACK, or mitochondrial-selective PKC∊ activator, TAT-Ψ∊HSP90, reduced cell death induced by simulated ischemia/reperfusion in neurons, astrocytes, and mixed neuronal cultures. The protective effects of both TAT-Ψ∊RACK and TAT-Ψ∊HSP90 were blocked by the PKC∊ antagonist ∊V1-2 , indicating that protection requires PKC∊ interaction with its anchoring protein, TAT-∊RACK. Further supporting a mitochondrial mechanism for PKC∊, neuroprotection by TAT-Ψ∊HSP90 was associated with a marked delay in mitochondrial membrane depolarization and significantly attenuated ROS generation during ischemia. Importantly, TAT-Ψ∊HSP90 reduced infarct size and reduced neurological deficit in C57/BL6 mice subjected to middle cerebral artery occlusion and 24 hr of reperfusion. Thus selective activation of mitochondrial PKC∊ preserves mitochondrial function in vitro and improves outcome in vivo, suggesting potential therapeutic value clinically when brain ischemia is anticipated, including neurosurgery and cardiac surgery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。