Inhibition of miR‑155‑5p attenuates the valvular damage induced by rheumatic heart disease

抑制 miR-155-5p 可减轻风湿性心脏病引起的瓣膜损伤

阅读:6
作者:Ang Chen, Jianlin Wen, Chuanghong Lu, Beiyou Lin, Shenglin Xian, Feng Huang, Yunjiao Wu, Zhiyu Zeng

Abstract

Autoimmunity is involved in the valvular damage caused by rheumatic heart disease (RHD). Increased evidence has linked microRNAs (miRNAs/miRs) to autoimmune disease. Signal transducer and activator of transcription 3 (STAT3) and sphingosine‑1‑phosphate receptor 1 (S1PR1) and suppressor of cytokine signaling 1 (SOCS1) have been widely studied for their roles in autoimmunity and inflammation. Thus, the current study aims to investigate the role played by miR‑155‑5p in RHD‑induced valvular damage via the S1PR1, SOCS1/STAT3 and interleukin (IL)‑6/STAT3 signaling pathways. An RHD rat model was induced by inactivated Group A streptococci and complete Freund's adjuvant. A recombinant adeno‑associated virus (AAV‑miR155‑inhibitor) was used to inhibit the expression of miR‑155‑5p in the heart. Inflammation and fibrosis were assessed by hematoxylin and eosin staining and Sirius red staining. The expression of miR‑155‑5p in valvular tissues and serum exosomes was detected by reverse transcription‑quantitative PCR. S1PR1, SOCS1, STAT3, phosphorylated STAT3, IL‑6 and IL‑17 protein expression was detected by western blotting and immunohistochemistry. The relationships between miR‑155‑5p and S1PR1 and SOCS1 were detected by dual luciferase assays. Cytokine concentrations were measured by ELISA. The expression of miR‑155‑5p in valve tissues and serum exosomes was increased along with decreased S1PR1 and activated SOCS1/STAT3 signaling in the RHD model. The expression of IL‑6 and IL‑17 was increased in the valves and the serum. Dual luciferase assays showed that miR‑155‑5p directly targeted S1PR1 and SOCS1. Inhibition of valvular miR‑155‑5p through AAV pretreatment increased S1PR1 expression and inhibited activation of the SOCS1/STAT3 signal pathway as a result of attenuated valvular inflammation and fibrosis as well as a decrease in IL‑6 and IL‑17 in the valves and serum. These results suggest that inhibition of miR‑155‑5p can reduce RHD‑induced valvular damage via the S1PR1, SOCS1/STAT3 and IL‑6/STAT3 signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。