Retinoic acid receptor β stimulates hepatic induction of fibroblast growth factor 21 to promote fatty acid oxidation and control whole-body energy homeostasis in mice

视黄酸受体β刺激肝脏诱导成纤维细胞生长因子21促进脂肪酸氧化并控制小鼠全身能量稳态

阅读:5
作者:Yu Li, Kimberly Wong, Kenneth Walsh, Bin Gao, Mengwei Zang

Abstract

Activation of retinoic acid receptor (RAR) with all-trans-retinoic acid (RA) ameliorates glucose intolerance and insulin resistance in obese mice. The recently discovered fibroblast growth factor 21 (FGF21) is a hepatocyte-derived hormone that restores glucose and lipid homeostasis in obesity-induced diabetes. However, whether hepatic RAR is linked to FGF21 in the control of lipid metabolism and energy homeostasis remains elusive. Here we identify FGF21 as a direct target gene of RARβ. The gene transcription of Fgf21 is increased by the RAR agonist RA and by overexpression of RARα and RARβ, but it is unaffected by RARγ in HepG2 cells. Promoter deletion analysis characterizes a putative RA-responsive element (RARE) primarily located in the 5'-flanking region of the Fgf21 gene. Disruption of the RARE sequence abolishes RA responsiveness. In vivo adenoviral overexpression of RARβ in the liver enhances production and secretion of FGF21, which in turn promotes hepatic fatty acid oxidation and ketogenesis and ultimately leads to increased energy expenditure in mice. The metabolic effects of RA or RARβ are mimicked by FGF21 overexpression and largely abolished by FGF21 knockdown. Moreover, hepatic RARβ is bound to the putative RAREs of the Fgf21 promoter in a fasting-inducible manner in vivo, which contributes to FGF21 induction and the metabolic adaptation to prolonged fasting. In addition to other nuclear receptors, such as peroxisome proliferator-activated receptor α and retinoic acid receptor-related receptor α, RAR may act as a novel component to induce hepatic FGF21 in the regulation of lipid metabolism. The hepatic RAR-FGF21 pathway may represent a potential drug target for treating metabolic disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。