Renal proteinase-activated receptor 2, a new actor in the control of blood pressure and plasma potassium level

肾蛋白酶激活受体 2,一种控制血压和血浆钾水平的新因子

阅读:5
作者:Luciana Morla, Gaëlle Brideau, Marc Fila, Gilles Crambert, Lydie Cheval, Pascal Houillier, Sureshkrishna Ramakrishnan, Martine Imbert-Teboul, Alain Doucet

Abstract

Proteinase-activated receptor 2 (PAR2) is a G protein-coupled membrane receptor that is activated upon cleavage of its extracellular N-terminal domain by trypsin and related proteases. PAR2 is expressed in kidney collecting ducts, a main site of control of Na(+) and K(+) homeostasis, but its function remains unknown. We evaluated whether and how PAR2 might control electrolyte transport in collecting ducts, and thereby participate in the regulation of blood pressure and plasma K(+) concentration. PAR2 is expressed at the basolateral border of principal and intercalated cells of the collecting duct where it inhibits K(+) secretion and stimulates Na(+) reabsorption, respectively. Invalidation of PAR2 gene impairs the ability of the kidney to control Na(+) and K(+) balance and promotes hypotension and hypokalemia in response to Na(+) and K(+) depletion, respectively. This study not only reveals a new role of proteases in the control of blood pressure and plasma potassium level, but it also identifies a second membrane receptor, after angiotensin 2 receptor, that differentially controls sodium reabsorption and potassium secretion in the late distal tubule. Conversely to angiotensin 2 receptor, PAR2 is involved in the regulation of sodium and potassium balance in the context of either stimulation or nonstimulation of the renin/angiotensin/aldosterone system. Therefore PAR2 appears not only as a new actor of the aldosterone paradox, but also as an aldosterone-independent modulator of blood pressure and plasma potassium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。