Sunlight sterilized, recyclable and super hydrophobic anti-COVID laser-induced graphene mask formulation for indelible usability

经阳光消毒、可回收、超疏水的抗新冠病毒激光诱导石墨烯口罩配方,具有永久使用性

阅读:7
作者:Kaushik Pal Jr, George Z Kyzas, Samo Kralj, F Gomes de Souza

Abstract

The uncontrollable outbreak of the novel coronavirus (COVID-19) rapidly affected almost 230 countries across the world and territories since last year'2020 and its transmission mainly due to respiratory droplets. To fight and protect against micron dimension (~1.4 µm) corona virus the usage of disposable medical masks is one and only trivial option for patients, doctors, health employers and in fact mandatory for kids to senior citizens, as well as public places in a risky environment. Ordinary medical masks unable to self-sterilize in order to recycle for other appliances resulting further destroying impact of societies high economic and environmental costs. To minimize this global pandemic issue this proposal explores novel mechanism for further commercialization of surgical mask of photo-thermal and self-cleaning functionalization. Indeed, depositing few layer ultra-thin graphene coating onto low-melting temperature non-woven mask by tempering a dual mode laser induced mechanism. Incoming aqueous droplets are bounced off due the super-hydrophobic states were treated on the mask surface. Superficial hydrophobic surface yields an advanced safety towards approaching respiratory droplets. Due to the huge absorption coefficient capability of the sunrays activated laser-induced mask may rapidly boost temperature exceeds 85ºC under sunlight illumination, causes making the mask reusable after sunlight distillation. For SARS/coronavirus/ aerosolized bacteria, laser induced graphene mask is a recent breakthrough in superior antibacterial capacity. Furthermore, cost-effective and ultra-thin layered mask formulation recycled directly utilizes solar-driven desalination with remarkable self-exclusion performance for indelible usability. Featured review article, deals with remarkable achievements from forthcoming experimentation which may be inspired with layered mask designing by more progressive materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。