In Silico, In Vitro, and In Vivo Analysis Identifies Endometrial Circadian Clock Genes in Recurrent Implantation Failure

通过计算机模拟、体外和体内分析确定了复发性植入失败中的子宫内膜昼夜节律基因

阅读:6
作者:Junyu Zhai, Shang Li, Jingwen Hu, Minzhi Gao, Yun Sun, Zi-Jiang Chen, Linda C Giudice, Yanzhi Du

Conclusion

Aberrant expression of endometrial PER2 might contribute to impaired endometrial receptivity and development of RIF via regulating SHTN1, KLF5, and STEAP4.

Methods

The study was initially an in silico study, with confirmatory lab-based data from primary human endometrial stromal cells (hESCs) as well as endometrial biopsies obtained from 60 women undergoing gynecological surgery in a clinical research center. The study included 30 RIF women and 30 age-matched and body mass index-matched controls.

Objective

We aimed to assess the core circadian clock gene profiling in human endometrium across the menstrual cycle and the possible gene interaction networks in the endometrial receptivity of window of implantation (WOI) as well as RIF.

Results

Initial data mining and bioinformatics analysis of human endometrial microarray datasets across the menstrual cycle and between RIF women versus controls demonstrated the varied expression of core circadian clock genes across menstrual cycle, including the key role of PER2 in WOI and RIF. A PER2-centered network was investigated in the regulation of endometrial receptivity. We also confirmed the evidently increased mRNA expression of SHTN1, RXFP1, KLF5, and STEAP4 in the endometrium of RIF women, displaying the same trend as PER2 did, without any changes in MT1E and FKBP5. Treatment of PER2 siRNA in hESCs verified the positive regulation of PER2 to SHTN1, KLF5, and STEAP4.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。