Development of an In Silico Prediction Model for P-glycoprotein Efflux Potential in Brain Capillary Endothelial Cells toward the Prediction of Brain Penetration

开发脑毛细血管内皮细胞 P 糖蛋白流出潜力的计算机预测模型,以预测脑渗透

阅读:6
作者:Reiko Watanabe, Tsuyoshi Esaki, Rikiya Ohashi, Masataka Kuroda, Hitoshi Kawashima, Hiroshi Komura, Yayoi Natsume-Kitatani, Kenji Mizuguchi

Abstract

Developing in silico models to predict the brain penetration of drugs remains a challenge owing to the intricate involvement of multiple transport systems in the blood brain barrier, and the necessity to consider a combination of multiple pharmacokinetic parameters. P-glycoprotein (P-gp) is one of the most important transporters affecting the brain penetration of drugs. Here, we developed an in silico prediction model for P-gp efflux potential in brain capillary endothelial cells (BCEC). Using the representative values of P-gp net efflux ratio in BCEC, we proposed a novel prediction system for brain-to-plasma concentration ratio (Kp,brain) and unbound brain-to-plasma concentration ratio (Kp,uu,brain) of P-gp substrates. We validated the proposed prediction system using newly acquired experimental brain penetration data of 28 P-gp substrates. Our system improved the predictive accuracy of brain penetration of drugs using only chemical structure information compared with that of previous studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。