MircoRNA-29a in Astrocyte-derived Extracellular Vesicles Suppresses Brain Ischemia Reperfusion Injury via TP53INP1 and the NF-κB/NLRP3 Axis

星形胶质细胞衍生的细胞外囊泡中的 MircoRNA-29a 通过 TP53INP1 和 NF-κB/NLRP3 轴抑制脑缺血再灌注损伤

阅读:8
作者:Xin Liu #, Xinghua Lv #, Zhenzhen Liu, Mengjie Zhang, Yufang Leng

Abstract

Brain ischemia reperfusion injury (BIRI) is defined as a series of brain injury accompanied by inflammation and oxidative stress. Astrocyte-derived extracellular vesicles (EVs) are importantly participated in BIRI with involvement of microRNAs (miRs). Our study aimed to discuss the functions of miR-29a from astrocyte-derived EVs in BIRI treatment. Thus, astrocyte-derived EVs were extracted. Oxygen and glucose deprivation (OGD) cell models and BIR rat models were established. Then, cell and rat activities and pyroptosis-related protein levels in these two kinds of models were detected. Functional assays were performed to verify inflammation and oxidative stress. miR-29a expression in OGD cells and BIR rats was measured, and target relation between miR-29a and tumor protein 53-induced nuclear protein 1 (TP53INP1) was certified. Rat neural function was tested. Astrocyte-derived EVs improved miR-29a expression in N9 microglia and rat brains. Astrocyte-derived EVs inhibited OGD-induced injury and inflammation in vitro, reduced brain infarction, and improved BIR rat neural functions in vivo. miR-29a in EVs protected OGD-treated cells and targeted TP53INP1, whose overexpression suppressed the protective function of EVs on OGD-treated cells. miR-29a alleviated OGD and BIRI via downregulating TP53INP1 and the NF-κB/NLRP3 pathway. Briefly, our study demonstrated that miR-29a in astrocyte-derived EVs inhibits BIRI by downregulating TP53INP1 and the NF-κB/NLRP3 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。