Cells responsible for liver mass regeneration in rats with 2-acetylaminofluorene/partial hepatectomy injury

2-乙酰氨基芴/部分肝切除损伤大鼠中负责肝质量再生的细胞

阅读:7
作者:Chin-Sung Chien, Ya-Hui Chen, Hui-Ling Chen, Chiu-Ping Wang, Shang-Hsin Wu, Shu-Li Ho, Wen-Cheng Huang, Chun-Hsien Yu, Mei-Hwei Chang

Background

Whether hepatic progenitor cells (HPCs)/oval cells regenerate liver mass upon chronic liver injury is controversial in mice and has not been conclusively proven in humans and rats. In this study, we examined which cell type-hepatocytes or oval cells-mediates liver regeneration in the classic rat 2-acetylaminofluorene (AAF)/partial hepatectomy (PH) injury where AAF reversibly blocks hepatocyte proliferation, thereby inducing oval cell expansion after the regenerative stimulus of PH.

Conclusions

Hepatocyte self-replication provides the majority of hepatocyte regeneration, with supplementary contribution from oval cells in rats under AAF/PH injury. Oval cells expand and maintain in an undifferentiated state upon continuously nonselective liver injury, whereas they can significantly regenerate hepatocytes in a noncompetitive environment.

Methods

We employed lineage tracing of dipeptidyl peptidase IV (DPPIV, a hepatocyte canalicular enzyme)-positive hepatocytes by subjecting rats with DPPIV-chimeric livers to AAF/PH, AAF/PH/AAF (continuous AAF after AAF/PH to nonselectively inhibit regenerating hepatocytes), or AAF/PH/retrorsine injury (2-dose retrorsine after AAF/PH to specifically and irreversibly block existing hepatocytes); through these methods, we determined hepatocyte contribution to liver regeneration. To determine the oval cell contribution to hepatocyte regeneration, we performed DPPIV(+) oval cell transplantation combined with AAF/PH injury or AAF/PH/retrorsine injury in DPPIV-deficient rats to track the fate of DPPIV(+) oval cells.

Results

DPPIV-chimeric livers demonstrated typical oval cell activation upon AAF/PH injury. After cessation of AAF, DPPIV(+) hepatocytes underwent extensive proliferation to regenerate the liver mass, whereas oval cells underwent hepatocyte differentiation. Upon AAF/PH/AAF injury where hepatocyte proliferation was inhibited by continuous AAF treatment following AAF/PH, oval cells extensively expanded in an undifferentiated state but did not produce hepatocytes. By substituting retrorsine for AAF administration following AAF/PH (AAF/PH/retrorsine), oval cells regenerated large-scale hepatocytes. Conclusions: Hepatocyte self-replication provides the majority of hepatocyte regeneration, with supplementary contribution from oval cells in rats under AAF/PH injury. Oval cells expand and maintain in an undifferentiated state upon continuously nonselective liver injury, whereas they can significantly regenerate hepatocytes in a noncompetitive environment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。