Paraventricular Nucleus P2X7 Receptors Aggravate Acute Myocardial Infarction Injury via ROS-Induced Vasopressin-V1b Activation in Rats

室旁核 P2X7 受体通过 ROS 诱导的加压素-V1b 激活加重大鼠急性心肌梗死损伤

阅读:11
作者:Wenjing Cheng, Yinggang Sun, Qin Wu, Kokwin Ooi, Yi Feng, Chunmei Xia, Danian Zhu

Abstract

The present study was designed to investigate the mechanisms by which P2X7 receptors (P2X7Rs) mediate the activation of vasopressinergic neurons thereby increasing sympathetic hyperactivity in the paraventricular nucleus (PVN) of the hypothalamus of rats with acute myocardial ischemia (AMI). The left anterior descending branch of the coronary artery was ligated to induce AMI in rats. The rats were pretreated with BBG (brilliant blue G, a P2X7R antagonist), nelivaptan (a vasopressin V1b receptor antagonist), or diphenyleneiodonium (DPI) [an nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor]. Hemodynamic parameters of the heart were monitored. Myocardial injury and cardiomyocyte apoptosis were assessed. In the PVN of AMI rats, P2X7R mediated microglial activation, while reactive oxygen species (ROS) and NADPH oxidase 2 (NOX2) were higher than in the sham group. Intraperitoneal injection of BBG effectively reduced ROS production and vasopressin expression in the PVN of AMI rats. Moreover, both BBG and DPI pretreatment effectively reduced sympathetic hyperactivity and ameliorated AMI injury, as represented by reduced inflammation and apoptosis of cardiomyocytes. Furthermore, microinjection of nelivaptan into the PVN improved cardiac function and reduced the norepinephrine (AE) levels in AMI rats. Collectively, the results suggest that, within the PVN of AMI rats, P2X7R upregulation mediates microglial activation and the overproduction of ROS, which in turn activates vasopressinergic neuron-V1b receptors and sympathetic hyperactivity, hence aggravating myocardial injury in the AMI setting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。