CPEB1 coordinates alternative 3'-UTR formation with translational regulation

CPEB1 协调替代 3'-UTR 形成与翻译调控

阅读:7
作者:Felice-Alessio Bava, Carolina Eliscovich, Pedro G Ferreira, Belen Miñana, Claudia Ben-Dov, Roderic Guigó, Juan Valcárcel, Raúl Méndez

Abstract

More than half of mammalian genes generate multiple messenger RNA isoforms that differ in their 3' untranslated regions (3' UTRs) and therefore in regulatory sequences, often associated with cell proliferation and cancer; however, the mechanisms coordinating alternative 3'-UTR processing for specific mRNA populations remain poorly defined. Here we report that the cytoplasmic polyadenylation element binding protein 1 (CPEB1), an RNA-binding protein that regulates mRNA translation, also controls alternative 3'-UTR processing. CPEB1 shuttles to the nucleus, where it co-localizes with splicing factors and mediates shortening of hundreds of mRNA 3' UTRs, thereby modulating their translation efficiency in the cytoplasm. CPEB1-mediated 3'-UTR shortening correlates with cell proliferation and tumorigenesis. CPEB1 binding to pre-mRNAs not only directs the use of alternative polyadenylation sites, but also changes alternative splicing by preventing U2AF65 recruitment. Our results reveal a novel function of CPEB1 in mediating alternative 3'-UTR processing, which is coordinated with regulation of mRNA translation, through its dual nuclear and cytoplasmic functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。