A broadband chip-scale optical frequency synthesizer at 2.7 × 10(-16) relative uncertainty

相对不确定度为 2.7 × 10(-16) 的宽带芯片级光频率合成器

阅读:5
作者:Shu-Wei Huang, Jinghui Yang, Mingbin Yu, Bart H McGuyer, Dim-Lee Kwong, Tanya Zelevinsky, Chee Wei Wong

Abstract

Optical frequency combs-coherent light sources that connect optical frequencies with microwave oscillations-have become the enabling tool for precision spectroscopy, optical clockwork, and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but Kerr nonlinear dynamics in high-Q solid-state microresonators has recently demonstrated promising features as alternative platforms. The advance not only fosters studies of chip-scale frequency metrology but also extends the realm of optical frequency combs. We report the full stabilization of chip-scale optical frequency combs. The microcomb's two degrees of freedom, one of the comb lines and the native 18-GHz comb spacing, are simultaneously phase-locked to known optical and microwave references. Active comb spacing stabilization improves long-term stability by six orders of magnitude, reaching a record instrument-limited residual instability of [Formula: see text]. Comparing 46 nitride frequency comb lines with a fiber laser frequency comb, we demonstrate the unprecedented microcomb tooth-to-tooth relative frequency uncertainty down to 50 mHz and 2.7 × 10(-16), heralding novel solid-state applications in precision spectroscopy, coherent communications, and astronomical spectrography.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。