m6A Methylation of Precursor-miR-320/RUNX2 Controls Osteogenic Potential of Bone Marrow-Derived Mesenchymal Stem Cells

前体 miR-320/RUNX2 的 m6A 甲基化控制骨髓间充质干细胞的成骨潜能

阅读:5
作者:Gege Yan, Ye Yuan, Mingyu He, Rui Gong, Hong Lei, Hongbao Zhou, Wenbo Wang, Weijie Du, Tianshuai Ma, Shenzhen Liu, Zihang Xu, Manqi Gao, Meixi Yu, Yu Bian, Ping Pang, Xin Li, Shuting Yu, Fan Yang, Benzhi Cai, Lei Yang

Abstract

Methyltransferase-like 3 (METTL3) is the main enzyme for N6-methyladenosine (m6A)-based methylation of RNAs and it has been implicated in many biological and pathophysiological processes. In this study, we aimed to explore the potential involvement of METTL3 in osteoblast differentiation and decipher the underlying cellular and molecular mechanisms. We demonstrated that METTL3 is downregulated in human osteoporosis and the ovariectomized (OVX) mouse model, as well as during the osteogenic differentiation. Silence of METTL3 by short interfering RNA (siRNA) decreased m6A methylation levels and inhibited osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and reduced bone mass, and similar effects were observed in METTL3+/- knockout mice. In contrast, adenovirus-mediated overexpression of METTL3 produced the opposite effects. In addition, METTL3 enhanced, whereas METTL3 silence or knockout suppressed, the m6A methylations of runt-related transcription factor 2 (RUNX2; a key transcription factor for osteoblast differentiation and bone formation) and precursor (pre-)miR-320. Moreover, downregulation of mature miR-320 rescued the decreased bone mass caused by METTL3 silence or METTL3+/- knockout. Therefore, METTL3-based m6A modification favors osteogenic differentiation of BMSCs through m6A-based direct and indirect regulation of RUNX2, and abnormal downregulation of METTL3 is likely one of the mechanisms underlying osteoporosis in patients and mice. Thus, METTL3 overexpression might be considered a new approach of replacement therapy for the treatment of human osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。