Ganoderal A effectively induces osteogenic differentiation of human amniotic mesenchymal stem cells via cross-talk between Wnt/β-catenin and BMP/SMAD signaling pathways

灵芝A通过Wnt /β-catenin和BMP / SMAD信号通路之间的相互作用有效诱导人羊膜间充质干细胞成骨分化

阅读:5
作者:Yi-Qing Wang, Nuo-Xin Wang, Yi Luo, Chang-Yin Yu, Jian-Hui Xiao

Abstract

Osteogenic inducers play central roles in effective stem cell-based treatment of bone defects/losses. However, the current routine osteogenic inducer is a cocktail comprising three components that must be improved due to low induction efficiency and side effects. Therefore, there is an urgent need to develop safer and more effective osteoinducers. Herein, we demonstrated the osteogenic effect of Ganoderal A (GD-A), a tetracyclic triterpenoid compound from Ganoderma lucidum. GD-A showed no cytotoxicity toward human amniotic mesenchymal stem cells (hAMSCs) at doses of 0.001-10 μM; furthermore, 0.01 μM GD-A significantly induced the generation of osteoblast-specific markers, such as alkaline phosphatase, and calcium deposition in hAMSCs. At molecular levels, GD-A promoted the expression of multiple osteoblast differentiation markers, such as RUNX2, OSX, OPN, ALP, OCN, and COL1α1. Both Wnt/β-catenin and BMP/SMAD signaling were shown as active during hAMSC osteodifferentiation. Furthermore, specific blocking of both signals by KYA1797K and SB431542 significantly inhibited alkaline phosphatase secretion and RUNX2 and ALP expression when used alone or in combination. Meanwhile, both signals were also blocked. These findings suggest that GD-A induces hAMSC differentiation into osteoblasts through signaling cross-talk between Wnt/β-catenin and BMP/SMAD. Taken together, GD-A is a safe, effective, and novel osteoinducer and might be used for stem cell-based therapy for bone defects/losses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。