N-cadherin mimetic hydrogel enhances MSC chondrogenesis through cell metabolism

N-钙粘蛋白模拟水凝胶通过细胞代谢增强 MSC 软骨形成

阅读:5
作者:Wencan Ke, Liang Ma, Bingjin Wang, Yu Song, Rongjin Luo, Gaocai Li, Zhiwei Liao, Yunsong Shi, Kun Wang, Xiaobo Feng, Shuai Li, Wenbin Hua, Cao Yang

Significance

The development of hypertrophy during MSCs chondrogenesis severely limits its clinical translation. Various strategies have been explored to inhibit hypertrophy by chemical and/or mechanical stimulation. However, the role of cell metabolism in MSCs chondrogenesis has rarely been studied. In this study, we developed an RNA sequencing at day 0, 7, and 21 of MSCs chondrogenesis to clarify the mechanisms that mediate hypertrophy. We found that hypertrophy occurred in the late stage of MSCs chondrogenesis with increased FAO and decreased glycolysis, as well as impaired cell-cell junctions. We also found that N-cadherin mimetic hydrogel attenuated hypertrophy and enhanced chondrogenesis through regulating glycolysis and FAO. Our finding provides new insights into the application of MSCs in tissue engineering and regenerative medicine.

Statement of significance

The development of hypertrophy during MSCs chondrogenesis severely limits its clinical translation. Various strategies have been explored to inhibit hypertrophy by chemical and/or mechanical stimulation. However, the role of cell metabolism in MSCs chondrogenesis has rarely been studied. In this study, we developed an RNA sequencing at day 0, 7, and 21 of MSCs chondrogenesis to clarify the mechanisms that mediate hypertrophy. We found that hypertrophy occurred in the late stage of MSCs chondrogenesis with increased FAO and decreased glycolysis, as well as impaired cell-cell junctions. We also found that N-cadherin mimetic hydrogel attenuated hypertrophy and enhanced chondrogenesis through regulating glycolysis and FAO. Our finding provides new insights into the application of MSCs in tissue engineering and regenerative medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。