Penicillin-binding protein redundancy in Bacillus subtilis enables growth during alkaline shock

枯草芽孢杆菌中的青霉素结合蛋白冗余使其在碱性冲击下能够生长

阅读:5
作者:Stephanie L Mitchell, Daniel B Kearns, Erin E Carlson

Abstract

Penicillin-binding proteins (PBPs) play critical roles in cell wall construction, cell shape, and bacterial replication. Bacteria maintain a diversity of PBPs, indicating that despite their apparent functional redundancy, there is differentiation across the PBP family. Seemingly redundant proteins can be important for enabling an organism to cope with environmental stressors. We sought to evaluate the consequence of environmental pH on PBP enzymatic activity in Bacillus subtilis. Our data show that a subset of B. subtilis PBPs change activity levels during alkaline shock and that one PBP isoform is rapidly modified to generate a smaller protein (i.e., PBP1a to PBP1b). Our results indicate that a subset of the PBPs are preferred for growth under alkaline conditions, while others are readily dispensable. Indeed, we found that this phenomenon could also be observed in Streptococcus pneumoniae, implying that it may be generalizable across additional bacterial species and further emphasizing the evolutionary benefit of maintaining many, seemingly redundant periplasmic enzymes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。