Multiple cancer types rapidly escape from multiple MAPK inhibitors to generate mutagenesis-prone subpopulations

多种癌症类型迅速逃避多种 MAPK 抑制剂的治疗,从而产生易发生突变的亚群

阅读:4
作者:Timothy E Hoffman, Chen Yang, Varuna Nangia, C Ryland Ill, Sabrina L Spencer

Abstract

Many cancers harbor pro-proliferative mutations of the mitogen-activated protein kinase (MAPK) pathway and many targeted inhibitors now exist for clinical use, but drug resistance remains a major issue. We recently showed that BRAF-driven melanoma cells treated with BRAF inhibitors can non-genetically adapt to drug within 3-4 days to escape quiescence and resume slow proliferation. Here we show that this phenomenon is not unique to melanomas treated with BRAF inhibitors but rather is widespread across many clinical MAPK inhibitors and cancer types driven by EGFR, KRAS, and BRAF mutations. In all treatment contexts examined, a subset of cells can escape drug-induced quiescence within four days to resume proliferation. These escapee cells broadly experience aberrant DNA replication, accumulate DNA lesions, spend longer in G2-M cell cycle phases, and mount an ATR-dependent stress response. We further identify the Fanconi anemia (FA) DNA repair pathway as critical for successful mitotic completion in escapees. Long-term cultures, patient samples, and clinical data demonstrate a broad dependency on ATR- and FA-mediated stress tolerance. Together, these results highlight the pervasiveness with which MAPK-mutant cancers are able to rapidly escape drug and the importance of suppressing early stress tolerance pathways to potentially achieve more durable clinical responses to targeted MAPK pathway inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。