ZFP281 coordinates DNMT3 and TET1 for transcriptional and epigenetic control in pluripotent state transitions

ZFP281 协调 DNMT3 和 TET1 在多能状态转换中进行转录和表观遗传控制

阅读:9
作者:Xin Huang, Sophie Balmer, Cong Lyu, Yunlong Xiang, Vikas Malik, Hailin Wang, Yu Zhang, Wei Xie, Anna-Katerina Hadjantonakis, Hongwei Zhou, Jianlong Wang

Abstract

The progression from naive through formative to primed in vitro pluripotent stem cell states recapitulates the development of the epiblast in vivo during the peri-implantation period of mammalian development. Activation of the de novo DNA methyltransferases and reorganization of transcriptional and epigenetic landscapes are key events occurring during these pluripotent state transitions. However, the upstream regulators that coordinate these events are relatively underexplored. Here, using Zfp281 knockout mouse and degron knock-in cell models, we uncover the direct transcriptional activation of Dnmt3a/3b by ZFP281 in pluripotent stem cells. Chromatin co-occupancy of ZFP281 and DNA hydroxylase TET1, dependent on the formation of R loops in ZFP281-targeted gene promoters, undergoes a "high-low-high" bimodal pattern regulating dynamic DNA methylation and gene expression during the naïive-formative-primed transitions. ZFP281 also safeguards DNA methylation in maintaining primed pluripotency. Our study demonstrates a previously unappreciated role for ZFP281 in coordinating DNMT3A/3B and TET1 functions to promote pluripotent state transitions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。